

Objective

Compete in the 2018 Argonia Cup Rocketry Competition by launching a rocket to at least 8000' AGL and returning a golf ball payload as close to the target as possible on a max of an L motor.

Design Approach

Autonomous nose cone quad copter that can easily fold into and deploy from the rocket.

Quad Specifications

Rocket-Launched Autonomous Quadcopter 2018 Argonia Cup Senior Design Project Oklahoma State University, College of Engineering, Architecture and Technology

Quadcopter - The Eagle

Nylon Rivets

15x5 Carbon Fiber Folding Props

Ambient Light Sensors

Multistar Elite 4114 330kv Brushless Motors

FPV Camera

Pixhawk 2.1

Telemetry Radio

Torsional Springs

ROCKETSXUAD

Backup Parachute

Payload

GPS

Raspberry Pi 3

4000mAh 25c LiPo Battery

Launch Vehicle - The Other Things

Gross Liftoff Weight (GLOW): 32 lb

Drogue parachute & piston cylinder

ŧ

Redundant recovery electronics bay

> CNC-cut fiberglass fins

Thorough pre-launch testing Apogee: 8,556 feet AGL Max Velocity: 1,020 MPH Successful rocket recovery

The Team: Nicholas Foster (Lead), Nicolas George, Ben Kadavy, Chad Kenkel, Logan Kunka, Gerald McCullers, Caleb Ritchie, Jake Rosario, Lucas Utley, & Andrew Walsh Faculty Advisors: Dr. James Kidd, Dr. Jamey Jacob

Launch

Results

Successful quad deployment & autonomous mission startup Anomaly during quad flight \rightarrow Partial mission success